Subscribe

San Jose, California USA

June 8, 2011 to June 11, 2011

ISBN: 978-0-7695-4411-3

pp: 1-11

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/CCC.2011.29

ABSTRACT

The "direct product problem'' is a fundamental question in complexity theory which seeks to understand how the difficulty of computing a function on each of k independent inputs scales with k. We prove the following direct product theorem (DPT) for query complexity: if every T$-query algorithmhas success probability at most 1 - \eps in computing the Boolean function f on input distribution mu, then for alpha \leq 1, every alpha \eps Tk-query algorithm has success probability at most (2^{\alpha \eps}(1-\eps))^k in computing the k-fold direct product f^{\otimes k} correctly on k independent inputs from \mu. In light of examples due to Shaltiel, this statement gives an essentially optimal tradeoff between the query bound and the error probability. Using this DPT, we show that for an absolute constant $\alpha > 0$, the worst-case success probability of any $\alpha R_2(f) k$-query randomized algorithm for f^{\otimes k} falls exponentially with k. The best previous statement of this type, due to Klauck, \v{S}palek, and de Wolf, required a query bound of O(bs(f) k). Our proof technique involves defining and analyzing a collection of martingales associated with an algorithm attempting to solve f^{\otimes k}. Our method is quite general and yields a new XOR lemma and threshold DPT for the query model, as well as DPTs for the query complexity of learning tasks, search problems, and tasks involving interaction with dynamic entities. We also give a version of our DPT in which decision tree size is the resource of interest.

INDEX TERMS

direct product theorems, query complexity, decision trees, average-case complexity, hardness amplification

CITATION

Andrew Drucker,
"Improved Direct Product Theorems for Randomized Query Complexity",

*CCC*, 2011, 2012 IEEE 27th Conference on Computational Complexity, 2012 IEEE 27th Conference on Computational Complexity 2011, pp. 1-11, doi:10.1109/CCC.2011.29