The Community for Technology Leaders
RSS Icon
Subscribe
Kottayam, Kerala, India
Oct. 27, 2009 to Oct. 28, 2009
ISBN: 978-0-7695-3845-7
pp: 766-769
ABSTRACT
Font Recognition is one of the Challenging tasks in Optical Character Recognition. Most of the existing methods for font recognition make use of local typographical features and connected component analysis. In this paper, English font recognition is done based on global texture analysis. The main objective of this proposal is to employ support vector machines (SVM) in identifying various fonts. The feature vectors are extracted by making use of Gabor filters and the proposed SVM is trained using these features. The method is found to give superior performance over neural networks by avoiding local minima points. The SVM model is formulated tested and the results are presented in this paper. It is observed that this method is content independent and the SVM classifier shows an average accuracy of 93.54%.
INDEX TERMS
English font recognition, Gabor filter, Support vector machine, Optical Character Recognition
CITATION
R. Ramanathan, K.P. Soman, L. Thaneshwaran, V. Viknesh, T. Arunkumar, P. Yuvaraj, "A Novel Technique for English Font Recognition Using Support Vector Machines", ARTCOM, 2009, Advances in Recent Technologies in Communication and Computing, International Conference on, Advances in Recent Technologies in Communication and Computing, International Conference on 2009, pp. 766-769, doi:10.1109/ARTCom.2009.89
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool