The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - July-September (2004 vol.3)
pp: 66-73
Xiaohui Gu , University of Illinois at Urbana-Champaign
Alan Messer , Hewlett-Packard Laboratories
Ira Greenberg , Hewlett-Packard Laboratories
Dejan Milojicic , Hewlett-Packard Laboratories
Klara Nahrstedt , University of Illinois at Urbana-Champaign
ABSTRACT
Pervasive computing lets users continuously and consistently access an application on heterogeneous devices. However, delivering complex applications on resource-constrained mobile devices such as cell phones is challenging. Application- or system-based adaptations attempt to address the problem, but often at the cost of considerable degradation to application fidelity. The solution is to dynamically partition the application and offload part of the application execution data to a powerful nearby surrogate. This allows delivery of the application in a pervasive computing environment without significant fidelity degradation or expensive application rewriting. Runtime offloading must adapt to different application execution patterns and resource fluctuations in the pervasive computing environment. This offloading inference engine adaptively solves two key decision-making problems in runtime offloading: timely triggering of offloading and efficient partitioning of applications. Both trace-driven simulations and prototype experiments confirm the effectiveness of this adaptive offloading system.
INDEX TERMS
pervasive computing, mobile device, adaptive offloading, dynamic partitioning, application execution
CITATION
Xiaohui Gu, Alan Messer, Ira Greenberg, Dejan Milojicic, Klara Nahrstedt, "Adaptive Offloading for Pervasive Computing", IEEE Pervasive Computing, vol.3, no. 3, pp. 66-73, July-September 2004, doi:10.1109/MPRV.2004.1321031
21 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool