This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Weighted Subspace Filtering and Ranking Algorithms for Video Concept Retrieval
July-September 2011 (vol. 18 no. 3)
pp. 32-43
Lin Lin, University of Miami, Coral Gables
Chao Chen, University of Miami, Coral Gables
Mei-Ling Shyu, University of Miami , Coral Gables
Shu-Ching Chen, Florida International University , Miami
The proposed framework, with weighted subspace filtering and ranking components, is the first attempt in multimedia research to apply multiple correspondence analysis to selected features while pruning data instances.

1. N.J. Salkind ed., Encyclopedia of Measurement and Statistics, Sage Publications, 2007.
2. A.F. Smeaton, P. Over, and W. Kraaij, "Evaluation Campaigns and Trecvid," ACM Int'l Workshop Multimedia Information Retrieval (MIR), ACM Press, 2006, pp. 321-330.
3. L. Lin et al., "Effective Feature Space Reduction with Imbalanced Data for Semantic Concept Detection," Proc. IEEE Int'l Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing, IEEE CS Press, 2008, pp. 262-269.
4. S.-C. Chen, M.-L. Shyu, and M. Chen, "An Effective Multi-Concept Classifier for Video Streams," Proc. IEEE Int'l Conf. Semantic Computing (ICSC), IEEE CS Press, 2008, pp. 80-87.
5. I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.
6. Y.-G. Jiang et al., "Representations of Keypoint-Based Semantic Concept Detection: A Comprehensive Study," IEEE Trans. Multimedia, vol. 12, no. 1, 2010, pp. 42-53.
7. A. Yanagawa et al., Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts, Advent tech. report 222-2006-8, Columbia University, Mar. 2007.
1. I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.
2. T. Koreniusa, J. Laurikkalaa, and M. Juhola, "On Principal Component Analysis, Cosine, and Euclidean Measures in Information Retrieval," Information Sciences, vol. 177, no. 22, 2007, pp. 4893-4905.
3. T. Joachims, "Optimizing Search Engines Using Clickthrough Data," Proc. 8th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, ACM Press, 2002, pp. 133-142.
4. C. Burges, "Learning to Rank Using Gradient Descent," Proc. Int'l Conf. Machine Learning, ACM Press, 2005, pp. 86-96.
5. Y. Freund et al., "An Efficient Boosting Algorithm for Combining Preference," J. Machine Learning Research, vol. 4, no. 6, 2003, pp. 933-963.
6. R. Yan and A.G. Hauptmann, "Efficient Margin-Based Rank Learning Algorithm for Information Retrieval," Proc. ACM Int'l Conf. Image and Video Retrieval (CIVR), ACM Press, 2006, pp. 113-121.
7. T.-S. Chua et al., "Trecvid 2005 by NUS PRIS," Proc. NIST Trecvid-2005, NIST, 2005.
8. Y. Liu et al., "Graph-Based Pairwise Learning to Rank for Video Search," Proc. Int'l Multimedia Modeling Conf. Advances, vol. 5371, Springer-Verlag, 2009, pp. 175-184.
9. S.C.H. Hoi and M.R. Lyu, "A Multimodal and Multilevel Ranking Scheme for Large-Scale Video Retrieval," IEEE Trans. Multimedia, vol. 10, no. 4, 2008, pp. 607-619.

Index Terms:
concept retrieval, multiple correspondence analysis (MCA), filtering, dissimilarity measure, ranking
Citation:
Lin Lin, Chao Chen, Mei-Ling Shyu, Shu-Ching Chen, "Weighted Subspace Filtering and Ranking Algorithms for Video Concept Retrieval," IEEE Multimedia, vol. 18, no. 3, pp. 32-43, July-Sept. 2011, doi:10.1109/MMUL.2011.35
Usage of this product signifies your acceptance of the Terms of Use.