This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Video Annotation and Retrieval Using Ontologies and Rule Learning
October-December 2010 (vol. 17 no. 4)
pp. 80-88
Lamberto Ballan, University of Florence, Italy
Marco Bertini, University of Florence, Italy
Alberto Del Bimbo, University of Florence, Italy
Giuseppe Serra, University of Florence, Italy

An approach for automatic annotation and retrieval of video content uses semantic concept classifiers and ontologies to permit expanded queries to synonyms and concept specializations.

1. M. Everingham et al., "The PASCAL Visual Object Classes Challenge 2009 (VOC) Results," 2009; http://www.pascal-network.org/challenges/ VOC/voc2009/workshopindex.html.
2. A.F. Smeaton, P. Over, and W. Kraai, High-Level Feature Detection from Video in Trecvid: A 5-Year Retrospective of Achievements, Springer Verlag, 2009.
3. A. Hauptmann et al., "Can High-Level Concepts Fill the Semantic Gap in Video Retrieval? A Case Study with Broadcast News," IEEE Trans. Multimedia, vol. 9, no. 5, 2007, pp. 958-966.
4. J. Yang and A. Hauptmann, "(Un)reliability of Video Concept Detection," Proc. ACM Int'l Conf. Image and Video Retrieval, ACM Press, 2008, pp. 85-94.
5. J.R. Quinlan, "Learning Logical Definitions from Relations," Machine Learning, vol. 5, no. 3, 1990, pp. 239-266.
6. Z.-J. Zha et al., "Building a Comprehensive Ontology to Refine Video Concept Detection," Proc. ACM Int'l Workshop Multimedia Information Retrieval, ACM Press, 2007, pp. 227-236.
7. K.-H. Liu et al., "Association and Temporal Rule Mining for Post-Filtering of Semantic Concept Detection in Video," IEEE Trans. Multimedia, vol. 10, no. 2, 2008, pp. 240-251.
8. A.D. Bagdanov et al., "Improving the Robustness of Particle Filter-Based Visual Trackers Using Online Parameter Adaptation," Proc. IEEE Int'l Conf. Advanced Video and Signal Based Surveillance, IEEE Press, 2007, pp. 218-223.
9. C. Snoek et al., "The Challenge Problem for Automated Detection of 101 Semantic Concepts in Multimedia," Proc. ACM Multimedia, ACM Press, 2006, pp. 421-430.
10. L. Kennedy, Revision of LSCOM Event/Activity Annotations, DTO Challenge Workshop on Large Scale Concept Ontology for Multimedia, Advent technical report #221-2006-7, Columbia Univ., 2006.
1. A. Hauptmann et al., "Can High-Level Concepts Fill the Semantic Gap in Video Retrieval? A Case Study with Broadcast News," IEEE Trans. Multimedia, vol. 9, no. 5, 2007, pp. 958-966.
2. J. Yang and A. Hauptmann, "(Un)reliability of Video Concept Detection," Proc. ACM Int'l Conf. Image and Video Retrieval, ACM Press, 2008, pp. 85-94.
3. C. Snoek and M. Worring, "Are Concept Detector Lexicons Effective for Video Search?" Proc. IEEE Int'l Conf. Multimedia & Expo, IEEE Press, 2007, pp. 1966-1969.
4. C. Snoek et al., "The MediaMill Trecvid 2008 Semantic Video Search Engine," Proc. 6th Trecvid Workshop, 2008; http://www-nlpir.nist.gov/projects/tvpubs/ tv7.papersmediamill.pdf.
5. S.F. Chang et al., "Columbia University/Vireo-CityU/IRIT Trecvid2008 High-Level Feature Extraction and Interactive Video Search," Proc. 6th Trecvid Workshop, 2008; http://www-nlpir.nist.gov/projects/tvpubs/ tv8.paperscolumbia.pdf.
6. A. Natsev et al., "IBM Research Trecvid-2008 Video Retrieval System," Proc. 6th Trecvid Workshop, 2008; http://www-nlpir.nist.gov/projects/tvpubs/ tv8.papersibm.pdf.
7. Z.-J. Zha et al., "Building a Comprehensive Ontology to Refine Video Concept Detection," Proc. ACM Int'l Workshop Multimedia Information Retrieval, ACM Press, 2007, pp. 227-236.
8. M. Naphade et al., "Large-Scale Concept Ontology for Multimedia," IEEE MultiMedia, vol. 13, no. 3, 2006, pp. 86-91.
9. X.-Y. Wei, C.-W. Ngo, and Y.-G. Jiang, "Selection of Concept Detectors Using Ontology-Enriched Semantic Space," IEEE Trans. Multimedia, vol. 10, no. 6, 2008, pp. 1085-1096.
10. M. Bertini et al., "Dynamic Pictorially Enriched Ontologies for Digital Video Libraries," IEEE MultiMedia, vol. 16, no. 2, 2009, pp. 42-51.
11. L. Hollink, S. Little, and J. Hunter, "Evaluating the Application of Semantic Inferencing Rules to Image Annotation," Proc. Int'l Conf. Knowledge Capture, ACM Press, 2005, pp. 91-98.
12. L. Bai et al., "Video Semantic Content Analysis Based on Ontology," Proc. Int'l Machine Vision and Image Processing Conf., IEEE Press, 2007, pp. 117-124.
13. M.-L. Shyu et al., "Video Semantic Event/Concept Detection Using a Subspace-Based Multimedia Data Mining Framework," IEEE Trans. Multimedia, vol. 10, no. 2, 2008, pp. 252-259.
14. K.-H. Liu et al., "Association and Temporal Rule Mining for Post-Filtering of Semantic Concept Detection in Video," IEEE Trans. Multimedia, vol. 10, no. 2, 2008, pp. 240-251.

Index Terms:
automatic video annotation, video retrieval, ontologies, SWRL, Semantic Web
Citation:
Lamberto Ballan, Marco Bertini, Alberto Del Bimbo, Giuseppe Serra, "Video Annotation and Retrieval Using Ontologies and Rule Learning," IEEE Multimedia, vol. 17, no. 4, pp. 80-88, Oct.-Dec. 2010, doi:10.1109/MMUL.2010.4
Usage of this product signifies your acceptance of the Terms of Use.