The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - August (1995 vol.15)
pp: 19-30
ABSTRACT
This paper proposes a Reconfigurable Fuzzy Processor (RFP), for implementing both aggregative (OR, AND) and referential (Matching, Difference, Dominance, and Inclusion) operations. The RFP architecture combines both structural and parametric flexibility in the design of a network implementing these processors as a collection of fuzzy neurons. RFP neurons are composed of three main units: the fuzzy processor (also termed RFP), the learning unit (incorporating a Fuzzy Backpropagation learning algorithm) and a local memory unit. A Fuzzy Neural Network (FNN) is implemented as a bidirectionally linked series of shared buses. This implementation facilitates a modular and scalable design environment for the RFP. An appropriate interface is also provided, separate from the RFP neuron itself, to promote the reuse of the neuron design with alternative interconnect networks.
INDEX TERMS
Fuzzy Neural Network, In-Situ Learning, Backpropagation, Reconfigurability, Aggregative and Referential neurons.
CITATION
Witold Pedrycz, Peter J. Czezowski, "A Reconfigurable Fuzzy Neural Network with In-Situ Learning", IEEE Micro, vol.15, no. 4, pp. 19-30, August 1995, doi:10.1109/40.400639
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool