The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - Sept.-Oct. (2013 vol.28)
pp: 50-55
Natasha Balac , San Diego Supercomputer Center
ABSTRACT
No longer is the smart grid an esoteric, utopian idea: it's actively being put into practice, with an abundance of opportunities.
INDEX TERMS
intelligent systems, smart grid, energy management system, sustainability, EMS, electric vehicles, Big Data,
CITATION
Natasha Balac, ""Green Machine" Intelligence: Greening and Sustaining Smart Grids", IEEE Intelligent Systems, vol.28, no. 5, pp. 50-55, Sept.-Oct. 2013, doi:10.1109/MIS.2013.127
REFERENCES
1. S.D. Ramchurn,P. Vytelingum,A. Rogers,, and N.R. Jennings,“Putting the ‘Smarts’ into the Smart Grid: A Grand Challenge for Artificial Intelligence.” Comm. ACM, vol. 55, no. 4, 2012, pp. 86-97.
2. US Dept. of Energy, The Smart Grid: An Introduction, 2013; http://energy.gov/oe/downloadssmart-grid-introduction-0 .
3. S. Bashash et al., “Plug-In Hybrid Electric Vehicle Charge Pattern Optimization for Energy Cost and Battery Longevity,” J. Power Sources, vol. 196, no. 1, 2011, pp. 541-549.
4. B. Lunz,H. Walz,, and D.U. Sauer,“Optimizing Vehicle-to-Grid Charging Strategies Using Genetic Algorithm under the Consideration of Battery Aging,” Proc. Vehicle Power and Propulsion Conf., IEEE, 2011; doi:10.1109VPPC.2011.6043021.
5. S., Bashash,S.J. Moura,, and H.K. Fathy,“Battery Health-Conscious Plug-In Hybrid Electric Vehicle Grid Demand Prediction,” Proc. ASME 2010 Dynamic Systems and Control Conf., Am. Soc. Mechanical Eng. (ASME), 2010; http://faculty.ce.berkeley.edu/moura/pubs DSCC10_GridPHEVLoad.pdf.
6. R.C. Green,L. Wang,, and M. Alam,“Applications and Trends of High Performance Computing for Electric Power Systems: Focusing on Smart Grid,” IEEE Trans. Smart Grid, vol. 4, no. 2, June 2013, pp. 922-931; doi:10.1109TSG.2012.2225646.
7. C. Rudin et al., “Machine Learning for the New York City Power Grid,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 2, 2012, pp. 328-345.
8. B. Washom et al., “Ivory Tower of Power: Microgrid Implementation at the University of California, San Diego,” IEEE Power and Energy Magazine, vol. 11, no. 4, 2013, pp. 28-32; doi:10.1109MPE.2013.2258278.
9. T. Sipes,N. Balac,H. Karimabadi,N. Wolter,K. Nunes,A. Roberts,“A Multivariate Time Series Classification Method for Streaming Data Using Temporal Metafeature Abstract Action,” Int’l J. Semantic Computing (IJSC), vol. 7, no. 2, 2013, pp. 173-183; doi:10.1142S1793351X13400084.
10. R. Mallik,N. Sarda,, and H. Kargupta,“Distributed Data Mining for Sustainable Smart Grids,” ACM Proc. Sustainable KDD Workshop, ACM, 2011; http://people.cs.vt.edu/~ramakris/SustKDD11 cfp.html.
11. A. Motamedi,H. Zareipour,, and W.D. Rosehart,“Electricity Price and Demand Forecasting in Smart Grids,” IEEE Trans. Smart Grids, vol. 3, no. 2, 2011, pp. 664-674.
12. H. Karimabadi et al., “A New Multivariate Time Series Data Analysis Technique: Automated Detection of Flux Transfer Events Using Cluster Data,” J. Geophysical Research, vol 114, no. A06216, 2009; doi:10.10292009JA014202.
13. H. Karimabadi et al., “Data Mining in Space Physics: 1. The MineTool Algorithm,” J. Geophysical Research, vol. 112, no. A11215, 2007; doi:10.10292006JA012136.
14. T.B. Sipes and H. Karimabadi,“MineTool-M2: An Algorithm for Data Mining of 2D Simulation Data,” Proc. Int’l Conf. Data Mining, CSREA Press, 2012; http://world-comp.org/p2012DMI9024.pdf.
15. T.B. Sipes and H. Karimabadi,“MineTool-3DM2: An Algorithm for Data Mining of 3D Simulation Data,” Proc. Int’l Conf. Data Mining, CSREA Press, 2013; http://world-comp.org/p2013DMI8059.pdf.
16. P. Mathiesen and J. Kleissl,“Evaluation of Numerical Weather Prediction for Intra-Day Hourly Solar Irradiance Forecasting in the CONUS,” Solar Energy, vol. 85, no. 5, 2011, pp. 9667-977.
17. N. Sharma et al., “Predicting Solar Generation from Weather Forecasts Using Machine Learning,” Proc. 2011 IEEE Int’l Conf. Smart Grid Communications, IEEE, 2011, pp. 528-533; doi:10.1109SmartGridComm.2011.6102379.
18. R.H. Inman,H.T.C. Pedro,, and C.F.M Coimbra,“Solar Forecasting Methods for Renewable Energy Integration,” Progress in Energy and Combustion Science, vol. 39, no. 6, 2013, pp. 535-576.
19. B. Aksanli,J. Venkatesh.,, and T. Simunic Rosing,“Datacenter Modeling and Simulation with Focus on Energy Efficiency and Green Energy Integration,” Computer, vol. 45, no. 9, 2012, pp. 56-64.
20. G. Dhiman.,R. Ayoub,, and T. Simunic Rosing,“Energy and Thermally Aware Scheduling in Datacenters,” Energy-Efficient Distributed Computing, ch. 11, Wiley-Interscience, 2010; doi:10.10029781118342015.ch11.
21. E. Regini,D. Lim,, and T.S. Rosing,“Resource Management in Heterogeneous Wireless Sensor Networks,” J. Low-Power Electronics (JOLPE), vol. 7, 2011; doi:10.1166jolpe.2011.1122.
22. Y. Agarwal,T. Weng,, and R.K. Gupta,“The Energy Dashboard: Improving the Visibility of Energy Consumption at a Campus-Wide Scale,” Proc. 1st ACM Workshop on Embedded Sensing Systems for Energy Efficiency in Buildings, ACM, 2009, pp. 55-60.
23. Y. Agarwal,S. Savage,, and R. Gupta,“SleepServer: A Software-Only Approach for Reducing the Energy Consumption of PCs Within Enterprise Environments,” Proc. 2010 Usenix Conf., Usenix Assoc., 2010, pp. 22-22.
24. Y. Agarwal et al., “Occupancy-Driven Energy Management for Smart Building Automation,” Proc. 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, ACM, 2010; http://doi.acm.org/10.11451878431.1878433 .
25. Y. Agarwal et al., “Building Depot: An Extensible and Distributed Architecture for Building Data Storage, Access and Sharing,” Proc. 4th ACM Workshop on Embedded Sensing Systems for Energy-efficiency in Buildings, ACM, 2012; doi:10.11452422531.2422545.
26. X. Fang et al., “Smart Grid—The New and Improved Power Grid: A Survey,” IEEE Comm. Surveys and Tutorials, vol. 14, no. 4, 2011, pp. 944-980.
33 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool