This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Machine Learning Tools for Automatic Mapping of Martian Landforms
November/December 2007 (vol. 22 no. 6)
pp. 100-106
Tomasz Stepinski, Lunar and Planetary Institute
Ricardo Vilalta, University of Houston
Soumya Ghosh, University of Colorado
The Mars planetary missions have produced vast stores of science data. The authors describe machine-learning methods and tools they've used to automate geomorphic mapping of Mars from archived data.

1. D. Landgrebe, "Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data," Information Processing for Remote Sensing, C.H. Chen, ed., World Scientific Publishing, 1999.
2. T.F. Stepinski and R. Vilalta, "Digital Topography Models for Martian Surfaces," IEEE Geoscience and Remote Sensing Letters, vol. 2, no. 3, 2005, pp. 260–264.
3. B.D. Bue and T.F. Stepinski, "Automated Classification of Landforms on Mars," Computers &Geoscience, vol. 32, no. 5, 2006, pp. 604–614.
4. T.F. Stepinski, S. Ghosh, and R. Vilalta, "Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification," Proc. Int'l Conf. Discovery Science, LNAI 4265, Springer, 2006, pp. 255–266.
5. T.F. Stepinski, S. Ghosh, and R. Vilalta, "Machine Learning for Automatic Mapping of Planetary Surfaces," Proc. 19th Innovative Applications of Artificial Intelligence Conf., AAAI Press, 2007, pp. 7–18.
6. R.P. Irwin and A.D. Howard, "Drainage Basin Evolution in Noachian Terra Cimmeria, Mars," J. Geophysical Research, vol. 107 E7, 2002, pp. 10-1–10-23.
7. M. Baatz and A. Schäpe, "Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation," Angewandte Geographische Informationsverarbeitung XII [Applied Geographical Data Processing], Wichmann, 2000, pp. 12–23.
8. T.K. Remmel and F. Csillag, "Mutual Information Spectra for Comparing Categorical Maps," Int'l J. Remote Sensing, vol. 27, no. 7, 2006, pp. 1425–1452.
9. R. Cilibrasi and M.P. Vitanyi, "Clustering by Compression," IEEE Trans. Information Theory, vol. 51, no. 4, 2005, pp. 1523–1545.
1. B.D. Bue and T.F. Stepinski, "Automated Classification of Landforms on Mars," Computers &Geoscience, vol. 32, no. 5, 2006, pp. 604–614.
1. D. Smith et al., Mars Global Surveyor Laser Altimeter Mission Experiment Gridded Data Record, NASA Planetary Data System, MGS-M-MOLA-5-MEGDR-L3-V1.0, 2003; www.gps.caltech.edu/~marsdatamars_MOLA_mgsl_300x_aareadme.txt .

Index Terms:
machine learning, Mars
Citation:
Tomasz Stepinski, Ricardo Vilalta, Soumya Ghosh, "Machine Learning Tools for Automatic Mapping of Martian Landforms," IEEE Intelligent Systems, vol. 22, no. 6, pp. 100-106, Nov.-Dec. 2007, doi:10.1109/MIS.2007.114
Usage of this product signifies your acceptance of the Terms of Use.