This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Diagnosing Dynamic Faults Using Modular Neural Nets
April 1993 (vol. 8 no. 2)
pp. 44-53

The use of radial basis function networks (RBFNs) for diagnosis and classification is discussed. Even though RBFNs can be trained quickly compared to backpropagation networks, the training effort is still significant for large-scale diagnosis problems. Rho-Net, an architecture that decomposes the dynamic classification problem in two ways, making such training tractable, is presented. The first decomposition reduces the amount of training data needed for any stage of the training process by constructing separate networks for each fault class. The second decomposition reduces the dimensionality of the input space by incorporating temporal information at the output of the network, instead of as a temporal window at the input of the net. Application of Rho-Nets to chemical process simulation is discussed.

Citation:
James A. Leonard, Mark A. Kramer, "Diagnosing Dynamic Faults Using Modular Neural Nets," IEEE Intelligent Systems, vol. 8, no. 2, pp. 44-53, April 1993, doi:10.1109/64.207428
Usage of this product signifies your acceptance of the Terms of Use.