The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January/February (2011 vol.28)
pp: 32-43
Masood Qazi , MIT, CAMBRIDGE
Mahmut Sinangil , MIT, 02139
ABSTRACT
<p>Editor's note:</p><p>SRAMs capable of operating at extremely low supply voltages&#x2014;for example, below the transistor threshold voltage&#x2014;can enable ultra-low-power battery-operated systems by allowing the logic and memory to operate at the same optimal supply voltage. This review article presents SRAM techniques including new bit cells, novel sensing schemes, and read/write assist circuits for ultra-low-power applications.</p><p align="right">&#x2014;Chris H. Kim, University of Minnesota</p>
INDEX TERMS
design and test, SRAM, CMOS memory circuits, random-access storage, cache memories, embedded memory, low-power electronics, low-voltage electronics
CITATION
Masood Qazi, Mahmut Sinangil, Anantha Chandrakasan, "Challenges and Directions for Low-Voltage SRAM", IEEE Design & Test of Computers, vol.28, no. 1, pp. 32-43, January/February 2011, doi:10.1109/MDT.2010.115
REFERENCES
1. N.A. Kurd et al., "Westmere: A Family of 32nm IA Processors," Proc. IEEE Int'l Solid-State Circuits Conf. (ISSCC 10), IEEE Press, 2010, pp. 96-97.
2. M.E. Sinangil, N. Verma, and A.P. Chandrakasan, "A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 11, 2009, pp. 3163-3173.
3. J. Kwong et al., "A 65 nm Sub-Vt Microcontroller with Integrated SRAM and Switched Capacitor DC-DC Converter," IEEE J. Solid-State Circuits, vol. 44, no. 1, 2009, pp. 115-126.
4. K. Takeda et al., "A Read-Static-Noise-Margin-Free SRAM Cell for Low-VDD and High-Speed Applications," IEEE J. Solid-State Circuits, vol. 41, no. 1, 2006, pp. 113-121.
5. L. Chang et al., "Stable SRAM Cell Design for the 32 nm Node and Beyond," Proc. Symp. VLSI Tech., IEEE Press, 2005, pp. 128-129.
6. B.H. Calhoun and A.P. Chandrakasan, "A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation," IEEE J. Solid-State Circuits, vol. 42, no. 3, 2007, pp. 680-688.
7. I.J. Chang et al., "A 32 kb 10T Sub-threshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 2, 2009, pp. 650-658.
8. W. Zhao and Y. Cao, "New Generation of Predictive Technology Model for Sub-45 nm Design Exploration," IEEE Trans. Electron Devices, vol. 53, no. 11, 2006, pp. 2816-2823.
9. K.J. Kuhn, "Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS," Proc. IEEE Int'l Electron Devices Meeting (IEDM 07), IEEE Press, 2007, pp. 471-474.
10. T. Karnik et al., "Scaling Trends of Cosmic Ray Induced Soft Errors in Static Latches beyond 0.18 μ," Proc. Symp. VLSI Circuits, 2001, pp. 61-62.
11. T. Suzuki et al., "A Sub-0.5-V Operating Embedded SRAM Featuring a Multi-bit-Error-Immune Hidden-ECC Scheme," IEEE J. Solid-State Circuits, vol. 41, no. 1, 2006, pp. 152-160.
12. K. Osada et al., "Universal-Vdd 0.65-2.0-V 32-kB Cache Using a Voltage-Adapted Timing-Generation Scheme and a Lithographically Symmetrical Cell," IEEE J. Solid-State Circuits, vol. 36, no. 11, 2001, pp. 1738-1744.
13. K. Zhang et al., "A 3-GHz 70-mb SRAM in 65-nm CMOS Technology with Integrated Column-Based Dynamic Power Supply," IEEE J. Solid-State Circuits, vol. 41, no. 1, 2006, pp. 146-151.
14. S. Ohbayashi et al., "A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability with Read and Write Operation Stabilizing Circuits," IEEE J. Solid-State Circuits, vol. 42, no. 4, 2007, pp. 820-829.
15. M. Khellah et al., "A 4.2GHz 0.3mm2 256kb Dual-Vcc SRAM Building Block in 65nm CMOS," Proc. IEEE Int'l Solid-State Circuits Conf. (ISSCC 06), IEEE Press, 2006, pp. 2572-2581.
16. Y. Morita et al., "An Area-Conscious Low-Voltage- Oriented 8T-SRAM Design under DVS Environment," Proc. IEEE Symp. VLSI Circuits, IEEE Press, 2007, pp. 256-257.
17. N. Verma and A.P. Chandrakasan, "A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy," IEEE J. Solid-State Circuits, vol. 43, no. 1, 2008, pp. 141-149.
18. M. Yamaoka et al., "A 300 MHz 25μA/Mb Leakage On-Chip SRAM Module Featuring Process-Variation Immunity and Low-Leakage-Active Mode for Mobile-Phone Application Processor," Proc. IEEE Int'l Solid-State Circuits Conf. (ISSCC 04), vol. 1, IEEE Press, 2004, pp. 494-495, 542.
19. M. Yabuuchi et al., "A 45nm 0.6V Cross-Point 8T SRAM with Negative Biased Read/Write Assist," Proc. Symp. VLSI Circuits, IEEE Press, 2009, pp. 158-159.
20. H. Pilo et al., "An SRAM Design in 65-nm Technology Node Featuring Read and Write-Assist Circuits to Expand Operating Voltage," IEEE J. Solid-State Circuits, vol. 42, no. 4, 2007, pp. 813-819.
21. A. Bhavnagarwala et al., "Fluctuation Limits & Scaling Opportunities for CMOS SRAM Cells," Proc. IEEE Int'l Electron Devices Meeting (IEDM 05), IEEE Press, 2005, pp. 659-662.
22. H. Nho et al., "A 32nm High-k Metal Gate SRAM with Adaptive Dynamic Stability Enhancement for Low- Voltage Operation," Proc. IEEE Int'l Solid-State Circuits Conf. (ISSCC 10), IEEE Press, 2010, pp. 346-347.
23. J. Pille et al., "Implementation of the Cell Broadband Engine in 65 nm SOI Technology Featuring Dual Power Supply SRAM Arrays Supporting 6 GHz at 1.3 V," IEEE J. Solid-State Circuits, vol. 43, no. 1, 2008, pp. 163-171.
24. M. Yamaoka et al., "65nm Low-Power High-Density SRAM Operable at 1.0V under 3σ Systematic Variation Using Separate Vth Monitoring and Body Bias for NMOS and PMOS," Proc. IEEE Int'l Solid-State Circuits Conf. (ISSCC 08), IEEE Press, 2008, pp. 384-385, 622.
25. S. Cosemans, W. Dehaene, and F. Catthoor, "A 3.6 pJ/Access 480 MHz, 128 kb On-Chip SRAM with 850 MHz Boost Mode in 90 nm CMOS with Tunable Sense Amplifiers," IEEE J. Solid-State Circuits, vol. 44, no. 7, 2009, pp. 2065-2077.
26. T.-H. Kim et al., "A 0.2 V, 480 kb Subthreshold SRAM with 1 k Cells per Bitline for Ultra-Low-Voltage Computing," IEEE J. Solid-State Circuits, vol. 43, no. 2, 2008, pp. 518-529.
27. M. Qazi et al., "A 512kb 8T SRAM Macro Operating down to 0.57V with an AC-Coupled Sense Amplifier and Embedded Data-Retention-Voltage Sensor in 45nm SOI CMOS," Proc. IEEE Int'l Solid-State Circuits Conf. (ISSCC 10), 2010, pp. 350-351.
28. H. Qin et al., "SRAM Leakage Suppression by Minimizing Standby Supply Voltage," Proc. 5th Int'l Symp. Quality Electronic Design (ISQED 04), IEEE Press, 2004, pp. 55-60.
29. H. Pilo et al., "A 450ps Access-Time SRAM Macro in 45nm SOI Featuring a Two-Stage Sensing-Scheme and Dynamic Power Management," Proc. IEEE Int'l Solid-State Circuits Conf. (ISSCC 08), 2008, pp. 378-379, 621.
30. Y. Takeyama et al., "A Low Leakage SRAM Macro with Replica Cell Biasing Scheme," Proc. IEEE Symp. VLSI Circuits, IEEE Press, 2005, pp. 166-167.
31. A. Singhee and R.A. Rutenbar, "Statistical Blockade: A Novel Method for Very Fast Monte Carlo Simulation of Rare Circuit Events, and Its Application," Proc. Design, Automation and Test in Europe Conf. (DATE 07), IEEE CS Press, 2007.
32. M. Qazi et al., "Loop Flattening & Spherical Sampling: Highly Efficient Model Reduction Techniques for SRAM Yield Analysis," Proc. Design, Automation and Test in Europe Conf. (DATE 10), IEEE CS Press, pp. 801-806.
33. H. McIntyre et al., "A 4-MB On-Chip L2 Cache for a 90-nm 1.6-GHz 64-Bit Microprocessor," IEEE J. Solid-State Circuits, vol. 40, no. 1, 2005. pp. 52-59.
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool