The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - July-Aug. (2013 vol.15)
pp: 76-86
Jacqueline Beckvermit , University of Utah
Joseph Peterson , University of Illinois at Urbana-Champaign
Todd Harman , University of Utah
Scott Bardenhagen , Mesomechanics
Charles Wight , University of Utah
Qingyu Meng , University of Utah
Martin Berzins , University of Utah
ABSTRACT
The Uintah Computational Framework is the first model ever to enable effective developing detonation simulations of semi-truck-scale transportation accidents.
INDEX TERMS
Accidents, Hazards, Explosions, Transportation, Scientific computing,scientific computing, Uintah Computational Framework, explosive modeling, explosive simulation, computer simulations
CITATION
Jacqueline Beckvermit, Joseph Peterson, Todd Harman, Scott Bardenhagen, Charles Wight, Qingyu Meng, Martin Berzins, "Multiscale Modeling of Accidental Explosions and Detonations", Computing in Science & Engineering, vol.15, no. 4, pp. 76-86, July-Aug. 2013, doi:10.1109/MCSE.2013.89
REFERENCES
1. S.A. Survey, Unplanned Explosions at Munitions Sites, tech. report, Small Arms Survey, Mar. 2013.
2. T.C. Henderson et al., “Simulating Accidental Fires and Explosions,” Computing in Science & Eng., vol. 2, no. 2, 2000, pp. 64-76.
3. M. Berzins, Status of Release of the Uintah Computational Framework, tech. report UUSCI-2012-001, Scientific Computing and Imaging (SCI) Inst., Univ. Utah, 2012.
4. B.A. Kashiwa, A Multifield Model and Method for Fluid-Structure Interaction Dynamics, tech. report LA-UR-01-1136, Los Alamos Nat'l Laboratory, 2001.
5. B.A. Kashiwa et al., A Cell-Centered ICE Method for Multiphase Flow Simulations, tech. report LA-UR-93-3922, Los Alamos Nat'l Laboratory, 1994.
6. D. Sulsky, S. Zhou, and H.L. Schreyer, “Application of a Particle-in-Cell Method to Solid Mechanics,” Computer Physics Comm., vol. 87, nos. 1–2, 1995, pp. 236-252.
7. J.E. Guilkey, T.B. Harman, and B. Banerjee, “An Eulerian-Lagrangian Approach for Simulating Explosions of Energetic Devices,” Computers and Structures, vol. 85, nos. 11–14, 2007, pp. 660-674.
8. J. Spinti et al., “Heat Transfer to Objects in Pool Fires,” Transport Phenomena in Fires, WIT Press, 2008.
9. J. Luitjens and M. Berzins, “Improving the Performance of Uintah: A Large-Scale Adaptive Meshing Computational Frameworking Computational Framework,” Proc. 24th IEEE Int'l Parallel and Distributed Processing Symp., IEEE, 2010; http://ieeexplore.ieee.org/xplabstractKeywords.jsp?reload=true&arnumber=5470437 .
10. J.U. Brackbill and H.M. Ruppel, “FLIP: A Method for Adaptively Zoned, Particle-in-Cell Calculations of Fluid Flows in Two Dimensions,” J. Computational Physics, vol. 65, no. 2, 1986, pp. 314-343.
11. S.G. Bardenhagen, “Energy Conservation Error in the Material Point Method for Solid Mechanics,” J. Computational Physics, vol. 180, no. 1, 2002, pp. 383-403.
12. M. Steffen, R. M. Kirby, and M. Berzins, “Decoupling and Balancing of Space and Time Errors in the Material Point Method (MPM),” Int'l J. for Numerical Methods in Eng., vol. 82, no. 10, 2010, pp. 1207-1243.
13. S.G. Bardenhagen, J.U. Brackbill, and D. Sulsky, “Numerical Study of Stress Distribution in Sheared Granular Material in Two Dimensions, Physical Review E, vol. 62, 2000, pp. 3882-3890.
14. A.D. Brydon et al., “Simulation of the Densification of Real Open-Celled Foam Microstructures,” J. Mechanics and Physics of Solids, vol. 53, no. 12, 2005, pp. 2638-2660.
15. S.G. Bardenhagen, J.A. Nairn, and H. Lu, “Simulation of Dynamic Fracture with the Material Point Method Using a Mixed J-Integral and Cohesive Law Approach,” Int'l J. Fracture vol. 170, no. 1, 2011, pp. 49-66.
16. J.R. Peterson and C.A. Wight, “An Eulerian-Lagrangian Computational Model for Deflagration and Detonation of High Explosives,” J. Combustion and Flame, vol. 159, no. 7, 2012, pp. 2491-2499.
17. M.J. Ward, S.F. Son, and M.Q. Brewster, “Steady Deflagration of HMX with Simple Kinetics: A Gas Phase Chain Reaction Model,” Combustion and Flame, vol. 114, nos. 3–4, 1998, pp. 556-568.
18. A.I. Atwood et al., “Burning Rate of Solid Propellant Ingredients, Part 1: Pressure and Initial Temperature Effects,” J. Propulsion and Power, vol. 15, no. 6, 1999, pp. 740-747.
19. C.A. Wight and E.G. Eddings, “Science-Based Simulation Tools for Hazard Assessment and Mitigation,” Advancements in Energetic Materials and Chemical Propulsion, vol. 114, no. 5, 2008, pp. 921-937.
20. C.M. Tarver and S.K. Chidester, “On the Violence of High Explosive Reactions,” J. Pressure Vessel Technology, vol. 127, no. 1, 2005, pp. 39-48.
21. P.C. Souers et al., “JWL++: A Simple Reactive Flow Code Package for Detonation,” Propellants, Explosives, Pyrotechnics, vol. 25, no. 2, 2000, pp. 54-58.
22. H.L. Berghout et al., “Combustion of Damaged PBX9501 Explosive,” Thermochimica Acta, vol. 384, nos. 1–2, 2002, pp. 261-277.
23. S.G. Parker, J. Guilkey, and T. Harman, “A Component-Based Parallel Infrastructure for the Simulation of Fluid Structure Interaction,” Eng. with Computers, vol. 22, nos. 3–4, 2006, pp. 277-292.
24. J. Luitjens and M. Berzins, “Scalable Parallel Regridding Algorithms for Block-Structured Adaptive Mesh Refinement,” J. Concurrency and Computation: Practice and Experience, vol. 23, no. 13, 2011, pp. 1522-1537.
25. M. Berzins et al., “Uintah: A Scalable Framework for Hazard Analysis,” Proc. Teragrid 2010, ACM, 2010; doi:10.1145/1838574.1838577.
26. Q. Meng, M. Berzins, and J. Schmidt, “Using Hybrid Parallelism to Improve Memory Use in the Uintah Framework,” Proc. Teragrid 2011, ACM, 2011 doi:10.1145/2016741.2016767.
27. Q. Meng and M. Berzins, Scalable Large-Scale Fluid-Structure Interaction Solvers in the Uintah Framework via Hybrid Task-based Parallelism Algorithms, tech. report UUSCI-2012-004, SCI Inst., Univ. of Utah, 2012.
28. R.W. Armstrong, S.G. Bardenhagen, and W.L. Elban, “Deformation-Induced Hot Spot Consequences of AP and RDX Crystal Hardness Measurements,” J. Energetic Materials and Chemical Propulsion, vol. 11, no. 5, 2012, pp. 413-425.
29. J.R. Peterson et al., “Multiscale Modeling of High Explosives for Transportation Accidents,” Proc. 2012 XSEDE Conf., ACM, 2012; http://doi.acm.org/10.1145/2335755.2335828.
30. M. Hall et al., “The Influence of an Applied Heat Flux on the Violence of Reaction of an Explosive Device,” Proc. 2013 XSEDE Conf., ACM, to be published, 2013.
31. P.M. Dickson et al., “Thermal Cook-Off Response of Confined PBX 9501,” The Royal Society A, vol. 460, no. 2052, 2004, pp. 3447-3455.
82 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool