Subscribe
Issue No.01 - Jan.-Feb. (2012 vol.14)
pp: 22-32
Nicola Thrupp , Université Catholique de Louvain, Belgium
Xavier Gonze , Université Catholique de Louvain, Belgium
Anne Matsuura , Université Catholique de Louvain, Belgium
Gaelle Bruant , Centre National de la Recherche Scientifique, France
Giovanni Onida , Università degli Studi di Milano, Italy
ABSTRACT
<p>The European Theoretical Spectroscopy Facility (ETSF) is a distributed knowledge network that gives researchers access to state-of-the-art computer simulations for electronic excited states in matter. Focusing on the fundamental knowledge of matter at the quantum-mechanical level, ETSF seeks to transfer this understanding to the future design of technologies in multiple areas.</p>
INDEX TERMS
Chemistry, electronics, engineering, physics, biology, library, software engineering, software development, scientific computing
CITATION
Nicola Thrupp, Xavier Gonze, Anne Matsuura, Gaelle Bruant, Giovanni Onida, "The ETSF: An e-Infrastructure That Bridges Simulations and Experiments", Computing in Science & Engineering, vol.14, no. 1, pp. 22-32, Jan.-Feb. 2012, doi:10.1109/MCSE.2011.76
REFERENCES
1. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge Univ. Press, 2004.
2. G. Onida, L. Reining, and A. Rubio, "Electronic Excitations: Density-Functional Versus Manybody Greens-Functions Approaches," Rev. Modern Physics, vol. 74, no. 2, 2002, pp. 601–659.
3. M.A.L. Marques et al., eds., Time Dependent Density Functional Theory (TDDFT), Lecture Notes in Physics, vol. 706, Springer, 2006.
4. D. Varsano et al., "A TDDFT Study of the Excited States of DNA Bases and Their Assemblies," J. Physical Chemistry B, vol. 110, no. 14, 2006, pp. 7129–7138.
5. H.-C. Weissker et al., "Signatures of Short-Range Many-Body Effects in the Dielectric Function of Silicon for Finite Momentum Transfer," Physical Rev. Letters, vol. 97, no. 23, 2006, doi:10.1103/PhysRevLett.97.237602.
6. F. Bruneval et al., "Exchange and Correlation Effects in Electronic Excitations of Cu2O," Physical Rev. Letters, vol. 97, no. 26, 2006, doi:10.1103/PhysRevLett.97.267601.
7. M. Palummo et al., "Reflectance Anisotropy Spectra of the Diamond (100)-(2x1) Surface: Evidence of Strongly Bound Surface State Excitons," Physical Rev. Letters, vol. 94, no. 8, 2005, doi:10.1103/PhysRevLett.94.087404.
8. J.S. Frähmcke et al., "The Protonation State of Glu181 in Rhodopsin Revisited: Interpretation of Experimental Data on the Basis of QM/MM Calculations," J. Physical Chemistry B, vol. 114, no. 34, 2010, pp. 11338–11352.
9. R. Caracas and C.E. Cohen, "Ferrous Iron in Post-Perovskite from First-Principles Calculations," Physics of the Earth and Planetary Interiors, vol. 168, nos. 3–4, 2008, pp. 147–152.
10. W. Welnic et al., "Origin of the Optical Contrast in Phase-Change Materials," Physical Rev. Letters, vol. 98, no. 23, 2007, doi:10.1103/PhysRevLett.98.236403.
11. L. Ravagnan et al., "Cluster-Beam Deposition and in situ Characterization of Carbyne-Rich Carbon Films," Physical Rev. Letters, vol. 89, no. 28, 2002, doi:10.1103/PhysRevLett.89.285506.
12. L. Ravagnan et al., "Effect of Axial Torsion on SP Carbon Atomic Wires," Physical Rev. Letters, vol. 102, no. 24, 2009, doi:10.1103/PhysRevLett.102.245502.
13. Z. Zanolli, G. Onida, and J.C. Charlier, "Quantum Spin Transport in Carbon Chains," ACS Nano, vol. 4, no. 9, 2010, pp. 5174–5180.
14. C. Jin et al., "Deriving Carbon Atomic Chains from Graphene," Physical Rev. Letters, vol. 102, no. 20, 2009, doi:10.1103/PhysRevLett.102.205501.
15. A. Rubio, "Hybridized Graphene: Nanoscale Patchworks," Nature Materials, vol. 9, 2010, pp. 379–380.
16. J.M. García-Lastra et al., "Modeling Nanoscale Gas Sensors under Realistic Conditions: Computational Screening of Metal-Doped Carbon Nanotubes," Physical Rev. B, vol. 81, no. 24, 2010, doi:10.1103/PhysRevB.81.245429.
17. M. Mikami et al., "New Phosphors for White LEDs: Material Design Concepts," IOP Conf. Series: Materials Science and Eng., vol. 1, no. 1, 2009, doi:10.1088/1757-8981/1/1/012002.
18. H. Jiang et al., "Electronic Band Structure of Zirconia and Hafnia Polymorphs from the GW Perspective," Physical Rev. B, vol. 81, no. 8, 2010, doi:10.1103/PhysRevB.81.085119.