The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - May/June (2011 vol.13)
pp: 31-37
Raul Queiroz Feitosa , Pontifical Catholic University of Rio de Janeiro
Dário Augusto Borges Oliveira , Pontifical Catholic University of Rio de Janeiro
Álvaro de Lima Veiga-Filho , Pontifical Catholic University of Rio de Janeiro
Raphael Pithan Brito , Montreal Informática
José Luiz Buonomo de Pinho , Montreal Informática
Antonio Carlos Censi , Montreal Informática
ABSTRACT
<p>Texture-based automatic face recognition (AFR) methods find global similarities between two faces by computing their local regional similarities. A novel method based on Fisher discriminant analysis is proposed to estimate each region's contribution to the global similarity score. Experimental results show that the method considerably improves recognition performance for texture-based AFR.</p>
INDEX TERMS
Biometrics, face recognition, local binary pattern, local phase quantization, software, scientific computing
CITATION
Raul Queiroz Feitosa, Dário Augusto Borges Oliveira, Álvaro de Lima Veiga-Filho, Raphael Pithan Brito, José Luiz Buonomo de Pinho, Antonio Carlos Censi, "Weighting Estimation for Texture-Based Face Recognition Using the Fisher Discriminant", Computing in Science & Engineering, vol.13, no. 3, pp. 31-37, May/June 2011, doi:10.1109/MCSE.2010.150
REFERENCES
1. S.Z. Li and A.K. Jain eds., , Handbook of Face Recognition, Springer Verlag, 2005.
2. T. Ahonen, A. Hadid, and M. Pietikäinen, "Face Recognition with Local Binary Patterns," Proc European Conf. Computer Vision (ECCV), LNCS 3024, Springer, 2004, pp. 469–481.
3. G. Heusch, Y. Rodriguez, and S. Marcel, "Local Binary Patterns as an Image Preprocessing for Face Authentication," Proc. 7th Int'l Conf. Automatic Face and Gesture Recognition, IEEE Press, 2006, pp. 9–14.
4. T. Ahonen, A. Hadid, and M. Pietikäinen, "Face Description with Local Binary Patterns: Application to Face Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, 2006, pp. 2037–2041.
5. T. Ahonen, A. Hadid, and M. Pietikäinen, "Face Recognition with Local Binary Patterns," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, 2006; doi:10.1109/TPAMI.2006.244.
6. V. Ojansivu and J. Heikkilä, "Blur Insensitive Texture Classification Using Local Phase Quantization," Proc. Int'l Conf. Image and Signal Processing, LNCS 5099, Springer Verlag, 2008, pp. 236–243.
7. T. Ahonen et al., "Recognition of Blurred Faces Using Local Phase Quantization," Proc. Int'l Conf. Pattern Recognition, IEEE Press, 2008, pp. 1–4.
8. S. Liao et al., "Facial Expression Recognition Using Advanced Local Binary Patterns, Tsallis Entropies, and Global Appearance Features," Proc. Int'l Conf. Image Processing, IEEE Press, 2006, pp. 665–668.
9. R.Q. Feitosa et al., "Optimal Region Weighting for Local Binary Pattern-Based Face Recognition," Proc. Biosignals and Biorobotics Conf. (ISSNIP), IGI Publishers, 2010, pp. 204–208.
10. R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, 1998.
11. W. Zhao et al., "Face Recognition: A Literature Survey," ACM Computing Surveys, vol. 35, no. 3, 2003, pp. 399–458.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool