Subscribe

Issue No.04 - July/August (2010 vol.12)

pp: 84-88

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.79

ABSTRACT

<p>A new exact representation of the error function of real arguments justifies an accurate and simple analytical approximation.</p>

INDEX TERMS

analytics, error function

CITATION

Mohankumar Nandagopal, Soubhadra Sen, Ajay Rawat, "A Note on the Error Function",

*Computing in Science & Engineering*, vol.12, no. 4, pp. 84-88, July/August 2010, doi:10.1109/MCSE.2010.79REFERENCES

- 1. M. Abramowitz and I.A. Stegun,
Handbook of Mathematical Functions, Dover, 1965.- 2. W. Cody, "Rational Chebyshev Approximations for the Error Function,"
Mathematics of Computation, vol. 23, no. 107, 1969, pp. 631–638.- 3. W. Gautschi, "Efficient Computation of the Complex Error Function,"
SIAM J. Numerical Analysis, vol. 7, 1970, pp. 187–198.- 4. M. Mori, "A Method for Evaluation of the Error Function of Real and Complex Variable with High Relative Accuracy,"
Publications of Research Inst. Mathematical Science (RIMS), Kyoto Univ., vol. 19, 1983, pp. 1081–1094.- 5. P. Van Halen, "Accurate Analytical Approximations for Error Function and its Integral,"
Electronics Letters, vol. 25, no. 9, 1989, pp. 561–563.- 6. J.D. Williams, "An Approximation to the Probability Integral,"
Annals Mathematical Statistics, vol. 17, no. 3, 1946, pp. 363–365.- 7. R. Menzel, "Approximate Closed Form Solution to the Error Function,"
American J. Physics, vol. 43, no. 10, 1975, pp. 366–367.- 8. S. Kalkaja, "Approximation for Error Function of Real Argument," 2005; www.student.oulu.fi/~saulikalerrorf.pdf.
- 9. D.V. Widder,
Advanced Calculus, Prentice-Hall, 1961.- 10. D.S. Mitronovic,
Analytic Inequalities, Springer-Verlag, 1970. |