
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Mark Watson, Roberto OlivaresAmaya, Richard G. Edgar, Alan AspuruGuzik, "Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units," Computing in Science and Engineering, vol. 12, no. 4, pp. 4051, July/August, 2010.  
BibTex  x  
@article{ 10.1109/MCSE.2010.29, author = {Mark Watson and Roberto OlivaresAmaya and Richard G. Edgar and Alan AspuruGuzik}, title = {Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units}, journal ={Computing in Science and Engineering}, volume = {12}, number = {4}, issn = {15219615}, year = {2010}, pages = {4051}, doi = {http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.29}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  MGZN JO  Computing in Science and Engineering TI  Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units IS  4 SN  15219615 SP40 EP51 EPD  4051 A1  Mark Watson, A1  Roberto OlivaresAmaya, A1  Richard G. Edgar, A1  Alan AspuruGuzik, PY  2010 KW  chemistry KW  quantum calculations KW  graphical processing units VL  12 JA  Computing in Science and Engineering ER   
1. K. Yasuda, "TwoElectron Integral Evaluation on the Graphics Processor Unit," J. Computational Chemistry, vol. 29, no. 3, 2008, pp. 334–342.
2. I.S. Ufitsev and T.J. Martinez, "Quantum Chemistry on Graphical Processing Units, 1 Strategies for TwoElectron Integral Evaluation," J. Chemical Theory and Computation, vol. 4, no. 2, 2008, pp. 222–231.
3. L. Vogt et al., "Accelerating ResolutionoftheIdentity SecondOrder M⊘llerPlesset Quantum Chemistry Calculations with Graphical Processing Units," J. Physical Chemistry A, vol. 112, no. 10, 2008, pp. 2049–2057.
4. R. OlivaresAmaya et al., "Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units and a Mixed Precision Matrix Multiplication Library," J. Chemical Theory and Computation, vol. 6, no. 1, 2010, pp. 135–144.
5. T. Helgaker, P. J⊘rgensen, and J. Olsen, Molecular ElectronicStructure Theory, John Wiley & Sons, 2000.
6. M. Feyereisen, G. Fitzgerald, and A. Komornicki, "Use of Approximate Integrals in ab initio Theory," Chemical Physics Lett., vol. 208, nos. 5–6, 1993, pp. 359–363.
7. X. Li et al., "Design, Implementation and Testing of Extended and Mixed Precision BLAS," ACM Trans. Mathematical Software, vol. 28, no. 2, 2002, pp. 152–205.
8. Y. Hida, X.S. Li, and D.H. Bailey, "Algorithms for QuadDouble Precision Floating Point Arithmetic," Proc. 15th IEEE Symp. Computer Arithmetic, IEEE CS Press, 2001, p. 155–162.
9. Y. Shao et al., "Advances in Methods and Algorithms in a Modern Quantum Chemistry Program Package," Physical Chemistry Chemical Physics, vol. 8, 2006, pp. 3172–3191.
10. T. Dunning Jr.,"Gaussian Basis Sets for Use in Correlated Molecular Calculations," J. Chemical Physics, vol. 90, 1989, pp. 1007–1014.
11. J. Bohannon, "Distributed Computing: Grassroots Supercomputing," Science, vol. 308, no. 5723, 2005, pp. 810–812.