The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - March/April (2010 vol.12)
pp: 28-35
Gerhard Klimeck , Purdue University
Mathieu Luisier , Purdue University
ABSTRACT
<p>Researchers have continually developed the Nanoelectronic Modeling (NEMO) toolset over the past 15 years to provide insight into nanoscale semiconductor devices that are dominated by quantum mechanical effects. The ability to represent realistically large devices on an atomistic basis has been the key element in matching experimental data and guiding experiments. The resulting insights led to the creation of OMEN, a new simulation engine.</p>
INDEX TERMS
Nanoelectronics, parallel computing, computer-aided design, nanotechnology, high-performance computing, atomistic modeling and simulation, nanoscale semiconductor devices
CITATION
Gerhard Klimeck, Mathieu Luisier, "Atomistic Modeling of Realistically Extended Semiconductor Devices with NEMO and OMEN", Computing in Science & Engineering, vol.12, no. 2, pp. 28-35, March/April 2010, doi:10.1109/MCSE.2010.32
REFERENCES
1. R.C. Bowen et al., "Quantitative Resonant Tunneling Diode Simulation," J. Applied Physics, vol. 81, no. 7, 1997, pp. 3207–3213, doi:10.1063/1.364151.
2. P. Van der Wagt and G. Klimeck, Method and System for Generating a Memory Cell, US Patent 6,667,490 to Raytheon TI Systems, Patent and Trademark Office, 2003.
3. G. Klimeck et al., "sp3s* Tight-Binding Parameters for Transport Simulations in Compound Semiconductors," Superlattices and Microstructures, vol. 27, 2000, pp. 519–524, doi:10.1006/spmi.2000.0862.
4. G. Klimeck et al., "Development of a Nanoelectronic 3-D (NEMO-3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots," Computer Modeling in Eng. and Science (CMES), vol. 3, no. 5, 2002, pp. 601–642.
5. T.B. Boykin et al., "Diagonal Parameter Shifts Due to Nearest-Neighbor Displacements in Empirical Tight-Binding Theory," Physics Rev. B, vol. 66, no. 12, 2002; doi:10.1103/PhysRevB.66.125207.
6. G. Klimeck et al., "Atomistic Simulation of Realistically Sized Nanodevices Using NEMO-3-D: Part I–Models and Benchmarks," IEEE Trans. Electron Devices, vol. 54, no. 9, 2007, pp. 2079–2089, doi:10.1109/TED.2007.902879.
7. M. Luisier et al., "Atomistic Simulation of Nanowires in the sp3d5s* Tight-Binding Formalism: From Boundary Conditions to Strain Calculations," Physics Rev. B, vol. 74, no. 20, 2006, doi:10.1103/PhysRevB.74.205323.
8. M. Luisier and G. Klimeck, "Atomistic Full-Band Simulations of Silicon Nanowire Transistors: Effects of Electron-Phonon Scattering," Physics Rev. B, vol. 94, no. 22, 2009; doi:10.1063/1.3140505.
9. R.K. Lake et al., "Interface Roughness and Polar Optical Phonon Scattering and the Valley Current in Resonant Tunneling Devices," Superlattices and Microstructures, vol. 20, 1996, pp. A163–A164, doi:10.1088/0268-1242/13/8A/046p.279.
10. G. Klimeck, "Parallelization of the Nanoelectronic Modeling Tool (NEMO-1-D) on a Beowulf Cluster," J. Computational Electronics, vol. 1, nos. 1–2, 2002, pp. 75–79, doi:10.1023/A:1020767811814.
11. B.P. Haley et al., "Advancing Nanoelectronic Device Modeling through Peta-Scale Computing and Deployment on nanoHUB," J. Physics Conf. Series, vol. 180, no. 1, 2009, doi:10.1088/1742-6596/180/1/012075.
12. M. Luisier et al., "Full-Band and Atomistic Simulation of Realistic 40 nm InAs HEMT," Proc. IEEE Int'l Electronic Devices Meeting, IEEE Press, 2008, pp. 1–4, doi:10.1109/IEDM.2008.4796842.
13. N. Kharche et al., "Valley-Splitting in Strained Silicon Quantum Wells Modeled with 2 Degree Miscuts, Step Disorder, and Alloy Disorder," Applied Physics Letters, vol. 84, no 9, 2004, pp. 115–117, doi:10.1063/1.2591432.
14. G.P. Lansbergen et al., "Gate Induced Quantum Confinement Transition of a Single Dopant Atom in a Si FinFET," Nature Physics, vol. 4, 2008, pp. 656–661, doi:10.138/nphys994.
15. M. Usman et al., "Moving Towards Nano-TCAD Through Multi-Million Atom Quantum Dot Simulations Matching Experimental Data," IEEE Trans. Nanotechnology, vol. 8, no. 3, 2009, pp. 330–344, doi:10.1109/TNANO.2008.2011900.
16. J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 μm Light Emission from InAs Quantum Dots Embedded in InGaAs Strain-Reducing Layer Grown by Metalorganic Chemical Vapor Deposition," Applied Physics Letters, vol. 78, no. 22, 2001, p. 3469, doi:10.1063/1.1375842.
17. D. Kim and J. del Alamo, "30 nm E-mode InAs PHEMTs for THz and Future Logic Applications," IEEE Int'l Electronic Device Meeting, IEEE Press, 2008, pp. 719–722.
18. M. Luisier, A. Schenk, and W. Fichtner, "Atomistic Treatment of Interface Roughness in Si Nanowire Transistors with Different Channel Orientations," Applied Physics Letters, vol. 90, no. 10, 2007, doi:10.1063/1.2711275.
19. M. Luisier and G. Klimeck, "Full-Band and Atomistic Simulation of N- and P-Doped Double-Gate Mosfets for the 22 nm Technology Node," Proc. Int'l Conf. Simulation Semiconductor Processes and Devices (SISPAD), IEEE Press, 2008, pp. 1–4, doi:10.1109/SISPAD.2008.4648226.
20. M. Luisier and G. Klimeck, "Atomistic, Full-Band Design Study of InAs Band-to-Band Tunneling Field-Effect Transistors," IEEE Electron Device Letters, vol. 30, 2009, pp. 602–604, doi:10.1109/LED.2009.2020442.
21. M. Luisier and G. Klimeck, "Performance Analysis of Statistical Samples of Graphene Nanoribbon Tunneling Transistors with Line Edge Roughness," Applied Physics Letters, vol. 94, no. 22, 2009; doi:10.1063/1.3140505.
626 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool