The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January/February (2010 vol.12)
pp: 64-72
ABSTRACT
<p>This technique helps determine key properties of the quantum Hamiltonian's ground state and tunes quantum fluctuations to help users find optimized solutions to computationally hard problems.</p>
INDEX TERMS
Quantum Monte Carlo, zero-temperature quantum Monte Carlo, quantum annealing
CITATION
Arnab Das, Anjan K. Chandra, Bikas K. Chakrabarti, "A Zero-Temperature Quantum Monte Carlo Algorithm and Quantum Spin Glasses", Computing in Science & Engineering, vol.12, no. 1, pp. 64-72, January/February 2010, doi:10.1109/MCSE.2010.2
REFERENCES
1. A. Das and B.K. Chakrabarti eds., , "Quantum Annealing and Related Optimization Methods," Lecture Notes in Physics, vol. 679, Springer-Verlag, 2005.
2. A. Das and B.K. Chakrabarti, "Colloquium: Quantum Annealing and Analog Quantum Computation," Rev. Mod. Phys., vol. 80, no. 3,2008; http://link.aps.org/doi/10.1103RevModPhys.80.1061 .
3. G.E. Santoro and E. Tosatti, "Computing: Quantum to Classical and Back," Nature Phys., vol. 3, no. 593, 2007, pp. 593–594.
4. E. Farhi et al., "A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem," Science, vol. 292, no. 472, 2001, pp. 472–475.
5. T. Kadowaki and H. Nishimori, "Quantum Annealing in the Transverse Ising Model," Physical Rev. E, vol. 58, 1998, pp. 5355–5363.
6. G.E. Santoro et al., "Theory of Quantum Annealing of an Ising Spin Glass," Science, no. 295, no. 5564, 2002, pp. 2427–2430.
7. J. Brook et al., "Quantum Annealing of a Disordered Magnet," Science, vol. 284, no. 5415, 1999, pp. 779–781.
8. R. Martonak, G.E. Santoro, and E. Tosatti, "Quantum Annealing of the Traveling-Salesman Problem," Physical Rev. E, vol. 70, no. 5,2004; http://link.aps.org/doi/10.1103PhysRevE.70.057701 .
9. A. Das, B.K. Chakrabarti, and R.B. Stinchcombe, "Quantum Annealing in a Kinetically Constrained System," Physical Rev. E, vol. 72, no. 2,2005; http://link.aps.org/doi/10.1103PhysRevE.72.026701 .
10. R.D. Somma, C.D. Batista, and G. Ortiz, "Quantum Approach to Classical Statistical Mechanics," Physical Rev. Letters, vol. 99, no. 3,2007; http://link.aps.org/doi/10.1103PhysRevLett.99.030603 .
11. G.E. Santoro and E. Tosatti, "Optimization Using Quantum Mechanics: Quantum Annealing through Adiabatic Evolution," J. Physics A, vol. 41, 2006; www.iop.org/EJ/article/1751-8121/41/20/209801 a8_20_209801.pdf.
12. J.P. Neirotti and M.J. de Oliveira, "Monte Carlo Method for Obtaining the Ground-State Properties of Quantum Spin Systems," Physics Rev. B, vol. 53, no. 2, 1996, pp. 668–673.
13. A. Das and B.K. Chakrabarti, "Reaching the Ground State of a Quantum Spin Glass Using a Zero-Temperature Quantum Monte Carlo Method," Physics Rev. E, vol. 78, no. 6,2008; http://link.aps.org/doi/10.1103PhysRevE.78.061121 .
14. E. Seneta, Non-Negative Matrices and Markov Chains, Springer-Verlag, 1981.
15. M.J. de Oliveira and J.R.N. Chiappin, "Monte Carlo Simulation of the Quantum Transverse Ising Model," Physica A, vol. 238, no. 1–4, 1997, pp. 307–316.
16. F. Barahona, "On the Computational Complexity of Ising Spin Glass Models," J. Physics A, vol. 15, no. 10,1982; www.iop.org/EJ/article/0305-4470/15/10/028 jav15i10p3241.pdf.
17. M. Mezard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond, Lecture Notes Physics, vol. 9, World Scientific, 1987.
18. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Text in Appl. Math., vol. 12, Springer-Verlag, 1993.
19. L. Stella and G.E. Santoro, "Quantum Annealing of an Ising Spin-Glass by Green's Function Monte Carlo," Physics Rev. E, vol. 75, no. 3,2007; http://link.aps.org/doi/10.1103PhysRevE.75.036703 .
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool