The Community for Technology Leaders
RSS Icon
Issue No.05 - September/October (2009 vol.11)
pp: 54-57
<p>The convex hull is one of computational geometry's fundamental structures, offering a simple way to approximate a point set's shape. Quickhull is a simple algorithm for computing convex hulls that takes a divide-and-conquer approach and proves efficient in practice.</p>
computing prescriptions
Ernst Mücke, "Quickhull: Computing Convex Hulls Quickly", Computing in Science & Engineering, vol.11, no. 5, pp. 54-57, September/October 2009, doi:10.1109/MCSE.2009.136
1. C.A.R. Hoare, "Quicksort," Computer J., vol. 5, no. 1, 1962, pp. 10–15.
2. F.P. Preparata and M.I. Shamos, Computational Geometry—An Introduction, 2nd ed., Springer-Verlag, 1988.
3. W.F. Eddy, "A New Convex Hull Algorithm for Planar Sets," ACM Trans. Mathematical Software, no. 3, no. 4, 1977, pp. 398–403.
4. A. Bykat, "Convex Hull of a Finite Set of Points in Two Dimensions," Information Processing Letters, vol. 7, no. 6, 1978, pp. 219–222.
5. T.H. Cormen et al., Introduction to Algorithms, 2nd ed., MIT Press/McGraw-Hill, 2001.
6. I. Beichl and F. Sullivan, "Copying with Degeneracies in Delauny Triangulations," Modelling, Mesh Generation and Adaptive Numerical Methods, J.E. Flaherty et al., eds., Springer-Verlag, 1995, pp. 23–20.
7. H. Edelsbrunner, and E. Mücke, "Simulation of Simplicity," ACM Trans. Graphics, vol. 9, no. 1, 1990, pp. 66–104.
8. C.B. Barber, D.P. Dobkin, and H. Huhdanpaa, "The Quickhull Algorithm for Convex Hulls," ACM Trans. Mathematical Software, vol. 22, no. 4, 1996, pp. 469–483.
1118 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool