The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - September/October (2006 vol.8)
pp: 59-67
Aparna Subbu , Applied Research Laboratory
Mendel Schmiedekamp , Applied Research Laboratory
ABSTRACT
Pattern discovery is a potential boon for data compression. By identifying generic patterns without human supervision, pattern discovery algorithms can extract the most relevant information for greatest fidelity in lossy compression. However, current approaches to pattern discovery are inefficient and produce cumbersome descriptions of patterns. The Clustered Causal State Algorithm (CCSA) is a new pattern discovery algorithm incorporating recent clustering technology. This algorithm sacrifices accuracy for increased efficiency and smaller model sizes. This makes CCSA ideal for lossy data compression and other real-time applications. This algorithm is compared to other pattern discovery algorithms and demonstrated in an image compression application.
INDEX TERMS
pattern analysis, model-based coding, statistical pattern models, clustering, real-time systems
CITATION
Aparna Subbu, Mendel Schmiedekamp, "The Clustered Causal State Algorithm: Efficient Pattern Discovery for Lossy Data-Compression Applications", Computing in Science & Engineering, vol.8, no. 5, pp. 59-67, September/October 2006, doi:10.1109/MCSE.2006.98
29 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool