The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.07 - July (2013 vol.46)
pp: 22-29
ABSTRACT
Analysts exploring big data require more from information visualization, data analysis, and data management than these components can now deliver. New infrastructures must address the nature of exploration as well as data scale. The Web extra at http://youtu.be/K9PvskathGI is a video segment that gives an overview of how research in visual analytics can help tackle the challenges of managing and interpreting big data in various domains.
INDEX TERMS
Visual analytics, Data visualization, Database systems, Data handling, Software architecture, Hardware, software infrastructures, visual analytics, visualization, hardware infrastructures
CITATION
Jean-Daniel Fekete, "Visual Analytics Infrastructures: From Data Management to Exploration", Computer, vol.46, no. 7, pp. 22-29, July 2013, doi:10.1109/MC.2013.120
REFERENCES
1. J. Thomas and K. Cook eds., , Illuminating the Path: Research and Development Agenda for Visual Analytics, IEEE, 2005.
2. S. Card, J. Mackinlay, and B. Shneiderman, Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann, 1999.
3. B.B. Bederson, J. Grosjean, and J. Meyer, “Toolkit Design for Interactive Structured Graphics,” IEEE Trans. Software Eng., vol. 30, no. 8, 2004, pp. 535-546.
4. J.-D. Fekete and C. Silva, “Managing Data for Visual Analytics: Opportunities and Challenges,” IEEE Data Eng. Bull., vol. 35, no. 3, 2012, pp. 27-36.
5. J.-D. Fekete, “Infrastructure,” Mastering the Information Age—Solving Problems with Visual Analytics, D. Keim et al., eds., Eurographics Assoc., 2010, pp. 87-108.
6. M. Beaudouin-Lafon et al., “Multisurface Interaction in the Wild Room,” Computer, Apr. 2012, pp. 48-56.
7. J. Talbot, Z. DeVito,, and P. Hanrahan, “Riposte: A Trace-Driven Compiler and Parallel VM for Vector Code in R,” Proc. 21st Int'l Conf. Parallel Architectures and Compilation Techniques (PACT 12), ACM, 2012, pp. 43-52.
8. D. Fisher et al., “Trust Me, I'm Partially Right: Incremental Visualization Lets Analysts Explore Large Datasets Faster,” Proc. SIGCHI Conf. Human Factors in Computing Systems (CHI 12), ACM, 2012, pp. 1673-1682.
9. P.A. Boncz, M.L. Kersten, and S. Manegold, “Breaking the Memory Wall in MonetDB,” Comm. ACM, vol. 51, no. 12, 2008, pp. 77-85.
10. S. Melnik et al., “Dremel: Interactive Analysis of Web-Scale Datasets,” Proc. 36th Int'l Conf. Very Large Databases (VLDB 10), IEEE CS, 2010, pp. 330-339.
11. F. Färber et al., “The SAP Hana Database − An Architecture Overview,” IEEE Data Eng. Bull., vol. 35, no. 1, 2012, pp. 28-33.
12. V. Benzaken et al., “EdiFlow: Data-Intensive Interactive Workflows for Visual Analytics,” Proc. 27th Int'l Conf. Data Engineering . (ICDE 11), 2011, pp. 780–791.
13. Oracle Inc., “Total Recall White Paper,” Sept. 2012; www.oracle.com/technetwork/database/focus-areas/ storagetotal-recall-whitepaper-171749.pdf .
14. S.P. Callahan et al., “VisTrails: Visualization Meets Data Management,” Proc. SIGMOD Int'l Conf. Management of Data (SIGMOD 06), ACM, 2006, pp. 745-747.
15. J.-D. Fekete et al., “Obvious: A Meta-toolkit to Encapsulate Information Visualization Toolkits—One Toolkit to Bind Them All,” Proc. Conf. Visual Analytics Science and Technology (VAST 11), IEEE, 2011, pp. 89-98.
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool