The Community for Technology Leaders
RSS Icon
Issue No.02 - Feb. (2013 vol.46)
pp: 36-45
D. Roggen , ETH Zurich, Zurich, Switzerland
Gerhard Troster , ETH Zurich, Zurich, Switzerland
P. Lukowicz , DFKI, Kaiserslautern Univ. of Technol., Kaiserslautern, Germany
A. Ferscha , Johannes Kepler Univ. of Linz, Linz, Austria
Jose del R. Millan , Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
R. Chavarriaga , Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
Achieving true ambient intelligence calls for a new opportunistic activity recognition paradigm in which, instead of deploying information sources for a specific goal, the recognition methods themselves dynamically adapt to available sensor data.
Intelligent sensors, Ambient intelligence, Internet of things, Human factors, Pattern recognition, Wearable computers, Context awareness, Ubiquitous computing, Wireless sensor networks, Opportunity Framework, Internet of Things, IoT, wearable AI, pervasive computing, ubiquitous computing, ambient intelligence, wireless sensor networks, pattern recognition, opportunistic activity recognition, context awareness
D. Roggen, Gerhard Troster, P. Lukowicz, A. Ferscha, Jose del R. Millan, R. Chavarriaga, "Opportunistic human activity and context recognition", Computer, vol.46, no. 2, pp. 36-45, Feb. 2013, doi:10.1109/MC.2012.393
1. M. Weiser, “Ubiquitous Computing,” Computer, Oct. 1993, pp. 71-72.
2. M. Presser et al., “The SENSEI Project: Integrating the Physical World with the Digital World of the Network of the Future,” IEEE Comm. Magazine, vol. 47, no. 4, 2009, pp. 1-4.
3. D.J. Cook, J.C. Augusto, and V.R. Jakkula, “Ambient Intelligence: Technologies, Applications, and Opportunities,” Pervasive and Mobile Computing, Aug. 2009, pp. 277-298.
4. A. Rezgui and M. Eltoweissy, “Service-Oriented Sensor-Actuator Networks: Promises, Challenges, and the Road Ahead,” Computer Comm., Sept. 2007, pp. 2627-2648.
5. J.O. Kephart and D.M. Chess, “The Vision of Autonomic Computing,” Computer, Jan. 2003, pp. 41-50.
6. M. Conti and M. Kumar, “Opportunities in Opportunistic Computing,” Computer, Jan. 2010, pp. 42-50.
7. K. Fuji and T. Suda, “Semantics-Based Context-Aware Dynamic Service Composition,” ACM Trans. Autonomous and Adaptive Systems, May 2009, article no. 12.
8. K. Kunze and P. Lukowicz, “Symbolic Object Localization through Active Sampling of Acceleration and Sound Signatures,” Proc. 9th Int'l Conf. Ubiquitous Computing (UbiComp 07), Springer, 2007, pp. 163-180.
9. D. Roggen et al., “Wearable Computing: Designing and Sharing Activity-Recognition Systems across Platforms,” IEEE Robotics & Automation Magazine, vol. 18, no. 2, 2011, pp. 83-95.
10. O. Baños et al., “Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities,” Proc. 16th Int'l Symp. Wearable Computers (ISWC 12), IEEE, 2012, pp. 92-99.
11. D. Bannach, B. Sick, and P. Lukowicz, “Automatic Adaptation of Mobile Activity Recognition Systems to New Sensors,” Proc. 2011 Workshop Mobile Sensing: Challenges, Opportunities, and Future Directions (UbiComp 11), ACM, 2011; events/ms_ubicomp11/papersbannach.pdf .
12. R. Chavarriaga, H. Sagha, and J. del R. Millán, “Ensemble Creation and Reconfiguration for Activity Recognition: An Information Theoretic Approach,” Proc. IEEE Int'l Conf. Systems, Man, and Cybernetics (IEEE SMC 11), IEEE, 2011, pp. 2761-2766.
13. J.B. Tenenbaum et al., “How to Grow a Mind: Statistics, Structure, and Abstraction,” Science, Mar. 2011, pp. 1279-1285.
14. M. Pantic and A. Vinciarelly, “Implicit Human-Centered Tagging,” IEEE Signal Processing Magazine, vol. 26, no. 6, 2009, pp. 173-180.
27 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool