The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.08 - August (2012 vol.45)
pp: 34-41
Stanley Tzeng , University of California, Davis
Brandon Lloyd , Microsoft
John D. Owens , University of California, Davis
ABSTRACT
A task-parallel approach to programming commodity graphics hardware is useful for implementing irregular parallel workloads with dependencies, particularly for applications such as video encoding and backtracking algorithms. The featured Web extra is a video that demonstrates how to use a GPU task-parallel model for H.264 intra prediction. The authors first describe the dependency structure and then how to map parallel work units to a problem. YouTube URL: http://youtu.be/K4VB1h4xres
INDEX TERMS
Graphics processing unit, Programming, Hardware, Encoding, Prediction algorithms, Predictive models, Youtube, Multithreading, multithreading, massively threaded systems, graphics processors, parallel processing, video coding, GPU, CPU
CITATION
Stanley Tzeng, Brandon Lloyd, John D. Owens, "A GPU Task-Parallel Model with Dependency Resolution", Computer, vol.45, no. 8, pp. 34-41, August 2012, doi:10.1109/MC.2012.255
REFERENCES
1. T. Aila and S. Laine, “Understanding the Efficiency of Ray Traversal on GPUs,” Proc. High-Performance Graphics (HPG 09), ACM, 2009, pp. 145-149.
2. S.G. Parker et al., “OptiX: A General-Purpose Ray Tracing Engine,” ACM Trans. Graphics, Aug. 2010; doi: 10.1145/1778765.1778803.
3. D. Cederman and P. Tsigas, “Dynamic Load Balancing Using Work-Stealing,” GPU Computing Gems Jade Edition, W. Hwu ed., Morgan Kaufmann, 2011, pp. 485-499.
4. S. Tzeng, A. Patney, and J.D. Owens, “Task Management for Irregular-Parallel Workloads on the GPU,” Proc. High-Performance Graphics (HPG 10), ACM, 2010, pp. 29-37.
5. N.S. Arora, R.D. Blumofe, and C.G. Plaxton, “Thread Scheduling for Multiprogrammed Multiprocessors,” Proc. 10th Ann. ACM Symp. Parallel Algorithms and Architectures (SPAA 08), ACM, 1998, pp. 119-129.
6. I.E. Richardson, The H.264 Advanced Video Compression Standard, Wiley, 2010.
7. T.H. Cormen et al., Introduction to Algorithms, 2nd ed., MIT Press, 2001.
8. J. Jenkins et al., “Lessons Learned from Exploring the Backtracking Paradigm on the GPU,” Proc. 17th Int'l European Conf. Parallel and Distributed Computing (Euro-Par 11), LNCS 6853, Springer, 2011, pp. 425-437.
9. N.M. Cheung et al., “Parallel Rate-Distortion Optimized Intra Mode Decision on Multi-Core Graphics Processors Using Greedy-Based Encoding Orders,” Proc. 16th IEEE Int'l Conf. Image Processing (ICIP 09), IEEE, 2009, pp. 2309-2312.
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool