This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Mining Very Large Databases
August 1999 (vol. 32 no. 8)
pp. 38-45

Established companies have had decades to accumulate masses of data about their customers, suppliers, products and services, and employees. Data mining, also known as knowledge discovery in databases, gives organizations the tools to sift through these vast data stores to find the trends, patterns, and correlations that can guide strategic decision making. Traditionally, algorithms for data analysis assume that the input data contains relatively few records. Current databases, however, are much too large to be held in main memory. To be efficient, the data-mining techniques applied to very large databases must be highly scalable. An algorithm is said to be scalable if--given a fixed amount of main memory--its runtime increases linearly with the number of records in the input database. Recent work has focused on scaling data-mining algorithms to very large data sets. In this survey, the authors describe a broad range of algorithms that address three classical data-mining problems: market basket analysis, clustering, and classification.

Citation:
Venkatesh Ganti, Johannes Gehrke, Raghu Ramakrishnan, "Mining Very Large Databases," Computer, vol. 32, no. 8, pp. 38-45, Aug. 1999, doi:10.1109/2.781633
Usage of this product signifies your acceptance of the Terms of Use.