This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Artificial Neural Networks: A Tutorial
March 1996 (vol. 29 no. 3)
pp. 31-44

Numerous advances have been made in developing intelligent programs, some inspired by biological neural networks. Researchers from many scientific disciplines are designing artificial neural networks (ANNs) to solve a variety of problems in pattern recognition, prediction, optimization, associative memory, and control. Although successful conventional applications can be found in certain well-constrained environments, none is flexible enough to perform well outside its domain. ANNs provide exciting alternatives, and many applications could benefit from using them. This article is for those readers with little or no knowledge of ANNs to help them understand the other articles in this issue of Computer. It discusses the motivation behind the development of ANNs; describes the basic biological neuron and the artificial computation model; outlines network architectures and learning processes; and presents multilayer feed-forward networks, Kohonen's self-organizing maps, Carpenter and Grossberg's Adaptive Resonance Theory models, and the Hopfield network. It concludes with character recognition, a successful ANN application.

Citation:
Anil K. Jain, Jianchang Mao, K.m. Mohiuddin, "Artificial Neural Networks: A Tutorial," Computer, vol. 29, no. 3, pp. 31-44, March 1996, doi:10.1109/2.485891
Usage of this product signifies your acceptance of the Terms of Use.