This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Forensic-Case Analysis: From 3D Imaging to Interactive Visualization
July-Aug. 2012 (vol. 32 no. 4)
pp. 79-87
Martin Urschler, Ludwig Boltzmann Institute for Clinical Forensic Imaging
Alexander Bornik, Ludwig Boltzmann Institute for Clinical Forensic Imaging
Eva Scheurer, Ludwig Boltzmann Institute for Clinical Forensic Imaging
Kathrin Yen, Heidelberg University Hospital
Horst Bischof, Graz University of Technology
Dieter Schmalstieg, Graz University of Technology
An interactive framework prepares raw computed-tomography and magnetic-resonance-imaging scans for courtroom presentations. The framework makes use of combined computer graphics and computer vision techniques to enable a forensic case analysis workflow.

1. J. March et al., “Three-Dimensional Computer Visualization of Forensic Pathology Data,” Am. J. Forensic Medicine and Pathology, vol. 25, no. 1, 2004, pp. 60–70.
2. P. Ljung et al., “Full Body Virtual Autopsies Using a State-of-the-Art Volume Rendering Pipeline,” IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, 2006, pp. 869–876.
3. M. Thali, R. Dirnhofer, and P. Vock, The Virtopsy Approach: 3D Optical and Radiological Scanning and Reconstruction in Forensic Medicine, CRC Press, 2008.
4. M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, vol. 8, no. 3, 1988, pp. 29–37.
5. B. Kainz et al., “Ray Casting of Multiple Volumetric Datasets with Polyhedral Boundaries on Manycore GPUs,” ACM Trans. Graphics, vol. 28, no. 5, 2009, article 152.
6. L. Wang et al., “The Magic Volume Lens: An Interactive Focus+Context Technique for Volume Rendering,” Proc. IEEE Visualization (VIS 05), IEEE, 2005, pp. 367–374.
7. L.I. Rudin, S. Osher, and E. Fatemi, “Nonlinear Total Variation Based Noise Removal Algorithms,” Physica D, vol. 60, nos. 1–4, 1992, pp. 259–268.
8. D.W. McRobbie et al., MRI from Picture to Proton, 2nd ed., Cambridge Univ., 2007.
1. B. Kainz et al., “Ray Casting of Multiple Volumetric Datasets with Polyhedral Boundaries on Manycore GPUs,” ACM Trans. Graphics, vol. 28, no. 5, 2009, article 152.
2. C. Everitt, Interactive Order-Independent Transparency, tech. report, Nvidia, 2001.
1. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,” Int'l J. Computer Vision, vol. 22, no. 1, 1997, pp. 61–79.
2. M. Unger et al., “TVSeg—Interactive Total Variation Based Image Segmentation,” Proc. British Machine Vision Conf. (BMVC 08), British Machine Vision Assoc., 2008, pp. 40.1–40.10.
3. X. Bresson et al., “Fast Global Minimization of the Active Contour/Snake Model,” J. Mathematical Imaging and Vision, vol. 28, no. 2, 2007, pp. 151–167.
4. T. Pock et al., “A Convex Formulation of Continuous Multi-label Problems,” Proc. European Conf. Computer Vision (ECCV 08), LNCS 5304, Springer, 2008, pp. 792–805.

Index Terms:
Visual analytics,Three dimensional displays,Interactive systems,Computed tomography,Magnetic resonance imaging,Forensics,computer graphics,Visual analytics,Three dimensional displays,Interactive systems,Computed tomography,Magnetic resonance imaging,Forensics,3D segmentation,computed tomography,magnetic resonance imaging,3D rendering,3D forensics
Citation:
Martin Urschler, Alexander Bornik, Eva Scheurer, Kathrin Yen, Horst Bischof, Dieter Schmalstieg, "Forensic-Case Analysis: From 3D Imaging to Interactive Visualization," IEEE Computer Graphics and Applications, vol. 32, no. 4, pp. 79-87, July-Aug. 2012, doi:10.1109/MCG.2012.75
Usage of this product signifies your acceptance of the Terms of Use.