
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Takashi Kanai, Hiromasa Suzuki, Fumihiko Kimura, "Metamorphosis of Arbitrary Triangular Meshes," IEEE Computer Graphics and Applications, vol. 20, no. 2, pp. 6275, March/April, 2000.  
BibTex  x  
@article{ 10.1109/38.824544, author = {Takashi Kanai and Hiromasa Suzuki and Fumihiko Kimura}, title = {Metamorphosis of Arbitrary Triangular Meshes}, journal ={IEEE Computer Graphics and Applications}, volume = {20}, number = {2}, issn = {02721716}, year = {2000}, pages = {6275}, doi = {http://doi.ieeecomputersociety.org/10.1109/38.824544}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  MGZN JO  IEEE Computer Graphics and Applications TI  Metamorphosis of Arbitrary Triangular Meshes IS  2 SN  02721716 SP62 EP75 EPD  6275 A1  Takashi Kanai, A1  Hiromasa Suzuki, A1  Fumihiko Kimura, PY  2000 KW  Geometric Modeling KW  Metamorphosis KW  Surface Correspondence KW  Harmonic Mapping VL  20 JA  IEEE Computer Graphics and Applications ER   
1. J.R. Kent, W.E. Carlson, and R.E. Parent, “Shape Transformation for Polyhedral Objects,” Computer Graphics (Proc. SIGGRAPH 92), vol. 26, no. 2, pp. 4754, July 1992.
2. T. Kanai, H. Suzuki, and F. Kimura, "ThreeDimensional Geometric Metamorphosis Based on Harmonic Maps," The Visual Computer, Vol. 14, No. 4, 1998, pp. 166176.
3. M. Ech, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, "Multiresolution Analysis of Arbitrary Meshes," Computer Graphics Proc. Ann. Conf. Series (Proc. Siggraph '95), pp. 173182, 1995.
4. J. Gomes, L. Darsa, B. Costa, and L. Velho, Warping&Morphing of Graphical Objects. Morgan Kaufman, 1998.
5. F. Lazarus and A. Verroust, "ThreeDimensional Metamorphosis: A Survey," The Visual Computer, Vol. 14, No. 8/9, 1998, pp. 373389.
6. J.F. Hughes, "Scheduled Fourier Volume Morphing," Computer Graphics (Proc. Siggraph 92), Vol. 26, No. 2, July 1992, pp. 4346.
7. K.K. Cheung, K. Yu, and K. Kui, "Volume Invariant Metamorphosis for Solid and Hollow Rolled Shape," Proc. Shape Modeling Int'l, IEEE Computer Society Press, Los Alamitos, Calif., 1997, pp. 226232.
8. T. He, S. Wang, and A. Kaufman, "WaveletBased Volume Morphing," Proc. Visualization 94, IEEE Computer Society Press, Los Alamitos, Calif., 1994, pp. 8592.
9. A. Lerios, C.D. Garfinkle, and M. Levoy, "FeatureBased Volume Metamorphosis," Proc. Siggraph 95, ACM Press, New York, 1995, pp. 449456.
10. T. Beier and S. Neely, "Feature Based Image Metamorphosis," Computer Graphics(Proc. Siggraph 91), ACM Press, New York, 1992, pp. 3542.
11. L. Lucas, F. Trund, and N. Bonnet, "TimeDependent 3D Data Sets Rendering: An Extension of the Morphing Technique," J. Visualization and Computer Animation, Vol. 7, No. 4, 1996, pp. 193210.
12. D. CohenOr, D. Levin, and A. Solomovici, "ThreeDimensional Distance Field Metamorphosis," ACM Trans. on Graphics, Vol. 17, No. 2, April 1998, pp. 116141.
13. W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics (SIGGRAPH '87 Proc.), vol. 21, pp. 163169, 1987.
14. J.R. Kent, R.E. Parent, and W.E. Carlson, "Establishing Correspondences by Topological Merging: A New Approach to 3D Shape Transformation," Proc. Graphics Interface, Morgan Kaufmann, San Francisco, Calif., June 1991, pp. 271278.
15. R.E. Parent, "Shape Transformation by Boundary Representation Interpolation: A Recursive Approach to Establishing Face Correspondences," J. Visualization and Computer Animation, Vol. 3, No. 4, 1992, pp. 219239.
16. H. Delingette, Y. Watanabe, and Y. Suenaga, "Simplex Based Animation," Proc. Computer Animation, N.M. Thalmann and D. Thalmann, eds., SpringerVerlag, Berlin, 1993, pp. 1328.
17. D. DeCarlo and J. Gallier, “Topological Evolution of Surfaces,” Proc. Graphics Interface, pp. 194203, May 1996.
18. A. Gregory et al., "FeatureBased Surface Decomposition for Correspondence and Morphing Between Polyhedra," Proc. Computer Animation, IEEE Computer Society Press, Los Alamitos, Calif., June 1998, pp. 6471.
19. W.H. Press et al., Numerical Recipes in C, Cambridge University Press, Cambridge, UK, 1992.
20. J.S.B. Mitchell, D.M. Mount, and C.H. Papadimitriou, “The Discrete Geodesic Problem,” SIAM J. Computing, vol. 16, pp. 647668, 1987.
21. J. Chen and Y. Han, "Shortest Paths on a Polyhedron," Proc. 6th ACM Symp. on Computational Geometry, ACM Press, New York, 1990, pp. 360369.
22. M. Lanthier, A. Maheshwari, and J.R. Sack, "Approximating Weighted Shortest Paths on Polyhedral Surfaces," Proc. 13th ACM Symp. on Computational Geometry, ACM Press, New York, June 1997, pp. 274283.
23. A. Aho, J. Hopcroft, and J. Ullman, Data Structures and Algorithms.Reading, Mass: AddisonWesley, 1983.
24. M. Mantyla, An Introduction to Solid Modeling.Rockville, Md., Computer Science Press, 1988.
25. M. Boyer and N.F. Stewart, "Modeling Spaces for Toleranced Objects," Int. J. Robotics Research, Vol. 10, No. 5, 1991, pp. 570582.
26. T. Duchamp et al., "Hierarchical Computation of PL Harmonic Embeddings," University of Washington preprint, Seattle, Wash., July 1997, http://www.math.washington.edu/~duchamp/ preprintspreprints.html.
27. A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin, “MAPS: Multiresolution Adaptive Parameterization of Surfaces,” Computer Graphics (SIGGRAPH '98 Proc.), M. Cohen, ed., vol. 32, pp. 95104, July 1998.
28. K. Sugihara and M. Iri,"A Solid Modeling System Free From Topological Inconsistency," J. Information Processing, vol. 12, pp. 380393, 1989.
29. T.W. Sederberg et al., "2D Shape Blending: An Intrinsic Solution to the Vertex Path Problem," Computer Graphics Proc. (Siggraph 93), 1993, ACM, New York, 1993, pp. 1518.
30. Y.M. Sun, W. Wang, and F.Y.L. Chin, "Interpolating Polyhedral Models Using Intrinsic Shape Parameters," Proc. Pacific Graphics, World Scientific,Singapore, 1995, pp. 133147.