The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - March/April (1999 vol.19)
pp: 68-78
ABSTRACT
We introduce a framework for streaming geometry in VRML that eliminates the need to perform complete downloads of geometric models before starting to display them. Starting with a level-of-detail (LOD) hierarchy of the geometry generated by any polygon reduction method, we build a multiresolution data structure for efficient rendering. Our data structure requires only about 10 percent additional memory on top of the full detailed model and can be used in combination with any mesh compression method for storage or transmission of the LOD hierarchy through a network. Our framework also suits viewpoint-dependent refinement.
INDEX TERMS
Level-Of-Detail (LOD) Hierarchy, Streaming, Geometric Compression.
CITATION
André Guéziec, Gabriel Taubin, Bill Horn, Francis Lazarus, "A Framework for Streaming Geometry in VRML", IEEE Computer Graphics and Applications, vol.19, no. 2, pp. 68-78, March/April 1999, doi:10.1109/38.749125
REFERENCES
1. ISO/IEC 14496-2 MPEG-4 Visual Working Draft Version 2 Rev. 5.0, SC29/WG11 document number W2473, Oct.16 1998.
2. R. Carey and G. Bell, The Annotated VRML 2.0 Reference Manual, Addison-Wesley, Reading, Mass., 1997.
3. M. Deering, “Geometry Compression,” Proc. SIGGRAPH '95, pp. 13-20, 1995.
4. H. Hoppe, “Progressive Meshes,” Proc. SIGGRAPH '96, pp. 99-108, 1996.
5. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus, “Progressive Forest Split Compression,” Proc. SIGGRAPH '98, pp. 123-132, 1998.
6. S. Gumhold and W. Strasser, “Real Time Compression of Triangle Mesh Connectivity,” Proc. SIGGRAPH '98, pp. 133-140, 1998.
7. A. Guézie et al., "Simplicial Maps for Progressive Transmission of Polygonal Surfaces," Proc. VRML 98, ACM Press, New York, 1998, pp. 25-31.
8. R. Ronfard and J. Rossignac, "Full-Range Approximation of Triangulated Polyhedra," Computer Graphics Forum, Proc. Eurographics 96, Vol. 15, No. 3, 1996, C67-C76.
9. J. Xia and A. Varshney, "Dynamic View-Dependent Simplification for Polygonal Models," Proc. IEEE Visualization 96, ACM Press, New York, 1996, pp. 327-334.
10. H. Hoppe, “View-Dependent Refinement of Progressive Meshes,” Proc. SIGGRAPH '97, pp. 189-198, 1997.
11. L.D. Floriani, P. Magillo, and E. Puppo, “Building and Traversing a Surface at Variable Resolution,” Proc. IEEE Visualization '97, pp. 103-110, Nov. 1997.
12. A. Guéziec, "Surface Simplification with Variable Tolerance," Proc. Second Annual Symp. Medical Robotics and Computer-Assisted Surgery, Wiley and Sons, New York, 1995, pp. 132-139.
13. M. Garland and P.S. Heckbert, "Surface Simplification Using Quadric Error Metrics," Proc. Siggraph 97, ACM Press, New York, 1997, pp. 209-216.
14. C. Bajaj and D. Schikore, "Error-Bounded Reduction of Triangle Meshes with Multivariate Data," Proc. SPIE, Vol. 2656, SPIE Press, Bellingham, Wash., 1996, pp. 34-45.
15. J. Cohen, M. Olano, and D. Manocha, Simplifying Polygonal Models Using Successive Mappings Proc. Visualization '97, pp. 395-402, Oct. 1997.
16. T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Smooth Hierarchical Surface Triangulations Proc. Visualization '97, R. Yagel and H. Hagen, eds., pp. 379-386, 1997.
17. W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decimation of Triangle Meshes,” Proc. SIGGRAPH '92, pp. 65-70, 1992.
18. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F.P. Brooks Jr., and W.V. Wright, "Simplification Envelopes," Computer Graphics Proc. Ann. Conf. Series (Proc. Siggraph '96), pp. 119-128, 1996.
19. A. Kalvin and R. Taylor, Superfaces: Polygonal Mesh Simplification with Bounded Error IEEE Computer Graphics and Applications, vol. 16, pp. 64-77, May 1996.
20. R. Tarjan, "Data Structures and Network Algorithms," SIAM,Philadelphia, Penn., 1983.
21. D. Luebke and C. Erikson, “View-Dependent Simplification of Arbitrary Polygonal Environments,” Proc. SIGGRAPH '97, pp. 199-208, 1997.
151 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool