This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Note on Rotation Matrices
February 1984 (vol. 4 no. 2)
pp. 30-33
Jay Fillmore, University of California at San Diego
Properly establishing the relation between linear algebra and geometry makes it easier to obtain the three-by-three orthogonal matrix that describes a specified rotation.

1. D. F.Rogers and J. A.Adams, Mathematical Elements for Computer Graphics , McGraw-Hill 1976
2. T.Pavlidis, Algorithms for Graphics and Image Processing , Computer Science Press 1982
3. B.Noble and J. W.Daniel, Applied Linear Algebra , Prentice-Hall 1977
4. E.Artin, Geometric Algebra , Interscience Press 1957
5. H. S. M.Coxeter, Introduction to Geometry , 1969 John Wiley & Sons

Citation:
Jay Fillmore, "A Note on Rotation Matrices," IEEE Computer Graphics and Applications, vol. 4, no. 2, pp. 30-33, Feb. 1984, doi:10.1109/MCG.1984.275935
Usage of this product signifies your acceptance of the Terms of Use.